skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Köta, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We revisit previous hybrid simulations of the heating and acceleration of interstellar pickup ions (PUIs) at the solar wind termination shock. In previous simulations, a relatively cold initial distribution of PUIs was assumed; and while the resulting shock-heated distribution was consistent with Voyager 2 LECP measurements at about 30 keV, the intensity of the distribution downstream of the shock in the ~1–10 keV energy range was lower than predictions based on analysis of energetic neutral atoms (ENAs) from the Interstellar Boundary Explorer-Hi and Cassini's Ion and Neutral Camera. Here we perform new simulations with more realistic initial PUI distributions. We assume the distribution is a partially filled spherical shell in velocity space with a radius that varies from 320 to 640 km s−1. We then use the distributions downstream of the shock from these new simulations to estimate the ENA flux spectrum and compare with observations. We find that the predicted ENA spectrum from the new simulations much better matches the observations over a broad range of energies. We conclude that the hybrid simulations provide reasonable predictions for the distribution of charged particles in the energy range from ~0.5 to 50 keV. 
    more » « less
    Free, publicly-accessible full text available February 3, 2026